Shodan Input Metric Survey

(http://C2.com/cgi/wiki?ShodanInputMetric)

The Shodan Adherence Survey is a subjective means of gathering adherence information from team members. The survey, answered anonymously via a web-based survey, is composed of 15 questions on the extent to which each individual on a team uses XP practices (testing has been split to three categories and stand up meetings were added to the practices). A survey respondent self-reports the extent to which he or she used the practice, on a scale from 0% (never) to 100% (always). An overall score for the survey is computed via a weighted average of each response.
Shodan survey questions

For each question, the respondents were asked to use the following scale:

10 
Fanatic (100%)

9 
Always (90%)

8 
Regular (80%)

7 
Often (70%)

6 
Usually (60%)

5 
Half ‘n Half (50%)

4 
Common (40%)

3 
Sometimes (30%)

2 
Rarely (20%)

1 
Hardly ever (10%)

0 
Disagree with using this practice

	Scale
	Description
	Scale
	Description

	10
	Fanatic (100%)
	4
	Common (40%)

	9
	Always (90%)
	3
	Sometimes (30%)

	8
	Regular (80%)
	2
	Rarely (20%)

	7
	Often (70%)
	1
	Hardly ever (10%)

	6
	Usually (60%)
	0
	Disagree with using this practice

	5
	Half ‘n Half (50%)
	
	


	XP Practice
	Weight
	Description / Question to be answered

	Automated Unit Tests
	6%
	You run automated unit test (such as JUnit) each time you make a change. What % of your changes are tested with automated unit tests before they are checked in?



	Customer Acceptance Tests


	3%
	Make sure both the developers and the customer know what they want What % of your requirements have corresponding tests specified by the customer?



	Test First Design
	3%
	Write test cases, then the code. The test case is the spec. What % of your code line items were written AFTER an automated test was developed for the corresponding scenario?



	Pair Programming
	12%
	Two people, one computer. One thinks strategy, the other tactics. What percentage of your work (design, analysis, coding) was done in pairs?

	Refactoring
	10%
	Rewrite code that 'smells bad' to improve future maintenance and flexibility without changing its behavior. What % of the time do you stop to cleanup code that has already been implemented without changing functionality?


	Release Planning
	6%
	Customer and developers trade items in and out of the plan based on current priorities and costs. Adaptation is favored over following a plan.Do you allow for changes in release plans/requirements after each iteration based on customer feedback and current implementation?



	Customer Access
	6%
	On Site Customer is best, you can use chat, etc. to quickly verify requirements and get feedback. What % of the time do you get quick interaction with your customers when needed?



	Short Releases
	6%
	You have frequent smaller releases instead of larger, less frequent ones. This lets the customer see how it’s going and lets you get feedback. How close are you to having releases that are about 3 months with interim iterations of a couple weeks?


	Stand Up Meeting
	6%
	The team takes 10 minutes each day to review what needs to be done each day and assigns user tasks to team members.



	Continuous Integration
	10%
	Code is checked in quickly to avoid code syncup / integration hassles. How often do you syncup and check in your code on average? (10 = 3 times a day, 8 = once a day)

	Coding Standards
	5%
	Do you have and adhere to team coding standards? Besides brace placement, this may include things like logging and performance idioms. How often do you follow your team standards?



	Collective Ownership
	8%
	You can change anyone’s code and they can change yours. You don’t get stuck when the expert is busy on vacation. People know many parts of the system. How often do people change code they did not originally 

write?

	Sustainable Pace
	5%
	People need to be effective over the long haul. How well do you pace yourself?

Example Scores:

10 - I maintain a sustainable pace and the same high rate of output.

5 – I work longer than what I consider a sustainable pace, but still produce at a high rate and feel only a little burnt out.

2 – I work beyond a sustainable pace and feel burnt out. My code isn’t at its usual high quality.

	Simple Design
	8%
	Keep it simple at first; do the simplest thing that could possibly work. You don’t follow the philosophy of “I’ll include this because the customer might possible need it later” even though the feature isn’t in the requirements. Also, you do not spend a lot of time on design documents. How often do you succeed in ‘Keeping it Simple’?



	Metaphor
	6%
	A single, overarching metaphor is used to describe the system. It is used by developers to help communicate ideas and to explain concepts to customers. How often do you feel this is true of the systems you develop?



	Lessons Learned
	
	The team reviews how to get better after every release.



	Growth
	
	Consider the latest tools and practices in addition to skills. If you’re not

learning, you’re falling behind!



	Morale
	
	How often can you say you’re enjoying your work? Ok



	Artifact Reduction
	
	With agile methods you have fewer/thinner versions of artifacts from classic techniques. This saves time, which can be invested in better tests, new code, refactoring, etc.

To what extent have you been able to:

Have fewer code reviews (Pairing instead), Thinner design specs (Test First Design), and Lighter comments/internal docs (Simple Design, Refactoring)



	Comments
	
	A blank text field for comments is provided













